

Border Biofuels and its consortium partners DynaMotive Europe Limited and Orenda Aerospace Corporation has been awarded one of the UK Government's largest ever grant offers to support the development of energy from biomass in the UK.

The £1.16 million/US\$1.7 million grant from the Department of Trade & Industry (DTI), which was announced by the UK Energy Minister Peter Hain, will aid the development of an integrated feedstock preparation, Bio-oil production and power generation plant in the UK. The project is expected to cost in excess of £4.5 million/US \$6.6 million and will be funded equally by the partners. Border Biofuels plans to construct a 25-tonne/day facility utilising DynaMotive Europe's patented fast pyrolysis technology to produce Bio-oil under a licensing agreement. The plant is expected to have a capacity to produce 12,000 litres of Bio-oil a day – enough to power a sawmill.

Dynamotive 10 tpd Facility in Vancouver

Dynamotive is now operating its new 10 tpd fast pyrolysis plant in Vancouver, Canada (Figures 1 & 2) and initial production has been completed successfully. Fuel quality oil was produced from British Columbia wood residues including mixed sawdust; softwood bark; mixtures of softwood and bark and sugar cane bagasse.

Continued on page 2

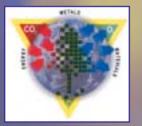


Figure 1: 10 t/d fluid bed fast pyrolysis plant in Vancouver.

MAY 2001 ISSUE 11

The 5th Biomass conference see p14

The 1st International Congress on Biomass for Metal Production and Electricity Generation see p15

STON

	Content
	Dynamotive
4	Dynamotive/Latest News
	The Hawaii Natural Energy Institute
	Investigation of Competitiveness
	Environment-friendly Oil Sorbent
	Pyrolysis in Spain
1	ENEL Pilot Plant
1	Energy and Process Innovation
1	Pyrolysis and Gasification of Waste
1	Diary of Events
1	Preliminary Programme/Vacancy
	Summary Reports
1	PyNe Membership

Continued from front cover

The new Bio-oil plant was designed in-house

constructed at the British Columbia Research

Complex in Vancouver BC. The plant conforms

by Dynamotive's Technology Group and

to all applicable safety, electrical and

mechanical design standards,

Figure 2: 10 t/d fluid bed fast pyrolysis plant in Vancouver.

utilising state of the art 'smart' instrumentation and a high powered industrial-grade distributed control system (DCS). The plant was designed to facilitate easy scale up to commercial plant capacities.

Officially commissioned on March 8th, the fully automated plant will have a production capacity of 6,000 litres of Bio-oil per day, providing much larger quantities of Bio-oil for engine and combustion test programmes.

For more information in Europe contact:

Mr Antony Robson Managing Director DynaMotive Europe Limited Tel: +44 (0) 20-7518-9380 Fax: +44 (0) 20-7518-9381 Email: arobson@dynamotive.com

The latest news on **ThermoNet** and **PvNe**

By Tony Bridgwater, Aston University,UK

2

.

0

-

0

-0

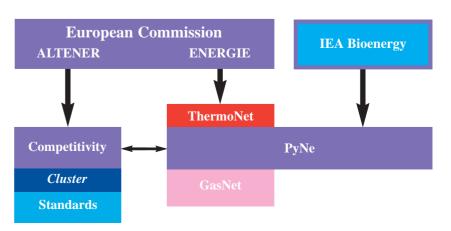
6

:

0

.

-


0

8

The EC contract for ThermoNet that incorporates the continuation of PyNe and the formation of GasNet – an analogous Network on biomass gasification – has now been signed and ThermoNet will officially start on 1st June 2001. PyNe is also sponsored by IEA Bioenergy and currently the USA is a member of PyNe.

In addition, two Altener Contracts have also been signed recently. One project will carry out a study on the competitivity of bio-oil in a variety of heat and power applications in every European country and which will involve all EU PyNe members.

The other project will investigate Norms and Standards for bio-oil. These two projects have been clustered by the European Commission to enhance interactions. The relationship between all these networks is shown in the figure below. An important feature of these combined networks and projects is the opportunities that will be created to benefit from all the knowledge and expertise of the members, particularly in the interactions and joint activities that are planned for the next three years.

Co-ordinator Tony Bridgwater Newsletter & Website Administrator Claire Humphreys Events Organiser Julie Ellen Bio-Energy Research Group, Aston University, Birmingham B4 7ET. UNITED KINGDOM. Tel +44 121 359 3611 Fax +44 121 359 6814 Email a.v.bridgwater@aston.ac.uk c.l.humphreys@aston.ac.uk j.ellen@aston.ac.uk

Website http://www.pyne.co.uk

ISSN 1470-3521

By Gregg Hirata, Hawaii Natural Energy Institute, University of Hawaii, USA

The Hawaii Natural Energy Institute (HNEI) provides leadership and support for the research, development, and utilisation of technologies that will enable Hawaii to tap its land and ocean resources for energy, food, minerals, and other needs. HNEI conducts applied research, manages research facilities and laboratories, demonstrates the applications of its work, and investigates the social, environmental, and economic impact of energy – and marine-related activities. HNEI co-operates in these endeavours with researchers from the University of Hawaii, government, industry, public utilities, and universities and research institutes abroad.

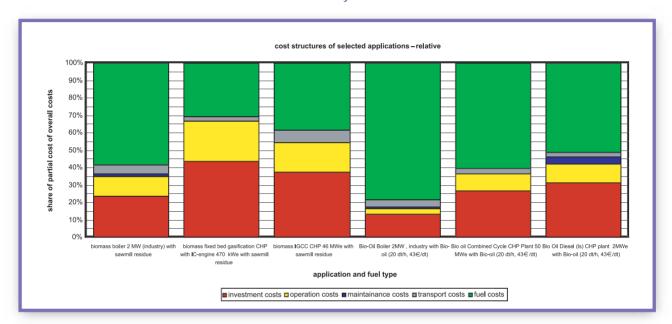
High-yield charcoal reactor.

For further information contact:

Dr Michael Antal, Jr., Hawaii Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawaii 2540 Dole Street Holmes Hall 246 Honolulu Hawaii 96822 USA Tel: +1 808 956 7267 Fax: +1 808 956 2336 Email: antal@wiliki.eng.hawaii.edu The Hawaii Natural Energy Institute has an exceptional record of achievement in developing alternatives to fossil fuels, including:-

- Spearheading the discovery and use of geothermal power in Hawaii.
- Co-ordinating the first comprehensive wind surveys of the Hawaiian archipelago that furnished the data needed for the location of wind turbines
- Conducting surveys of solar insulation and testing a variety of electricity-generating solar devices and systems.
- · Conducting numerous studies on ocean thermal energy conversion.
- Testing biomass-derived alcohol fuels as a replacement for petroleum-based transportation fuels.
- Establishing the most comprehensive hydrogen program of any university in the USA, a standing attributable to pioneering research on the production of this gas through solar electrochemical advancements using thin semiconductor films, gasification of biomass, and genetic engineering of hydrogen-producing marine organisms.
- Supporting marine-related research on deep-sea minerals mining, open-ocean fish farming, very large disposal of greenhouse gases in the ocean.

HNEI's Renewable Resources Research Laboratory, under the direction of Dr Michael J Antal, Jr., is a pioneer in the research and development of biomass technologies. Dr Antal, who is the Coral Industries Professor of Renewable Energy Resources, has patented a charcoal production technology that gives high charcoal yields, producing charcoal in minutes or hours, as compared to the many days of existing industrial technology or the longer periods of traditional methods. The technology can accept a variety of feedstocks, including moist wood logs, wood chips, and other commonly available biomass and agricultural by-products and is virtually non-polluting. The laboratory is a test-bed for the production of hydrogen using supercritical gasification (i.e. water at high temperature and pressure) of biomass. Dr Antal is directing a project investigating the commercial potential of producing ethanol from bagasse using his liquid water pre-treatment technology. Another major project is the development of high-yield activated carbon from biomass for use in waste-water treatment.



First results on investigation on competitiveness of biomass pyrolysis applications

JOANNEUM

The competitiveness of bio-oil compared to conventional fossil fuel in different heat and power applications is being studied by the PyNe Implementation Subject Group. Some preliminary results of this competitivity assessment are given below based on the situation in Austria in January 2000.

By Max Lauer, Joanneum Research, Graz, Austria

Figure 1: Cost structures (relative) of the selected biomass applications.

Method

The principle of competitivity assessment is that a potential investor faced with alternative different options (such as applications of different technologies), will tend to choose the most attractive to him, normally this will be the most competitive (i.e. most economic) one. From the view of an investor the term competitiveness can be described as the relation of annual cost of two applications using different technologies but giving the same service. For easy comparison between a variety of applications a "competitiveness factor" (CF) is introduced using the relation:

CF =	annual cost of conventional alternative
	annual cost of biomass technology application

As CF is a non-dimensional factor describing a cost relation, the economic competitiveness of different applications of different biomass conversion technologies can be compared to each other. If the bio-energy option is more attractive, i.e. cheaper, CF will be greater than 1.0.

The annual cost of the bio-energy application is calculated as the sum of costs of investment, operation and consumption and follows VDI 2067.

The annual cost of the conventional alternative is calculated assuming heat production with fossil gas/oil boilers and buying electricity (if applicable). All calculations are based on the cost/price situation for Austria in January 2000, an interest rate of 6% and a price for biomass fuel (sawmill residue) of $43 \in /dry t$.

The production cost of bio-oil is calculated using the function published in PyNe Guide 1, March 1999.

4

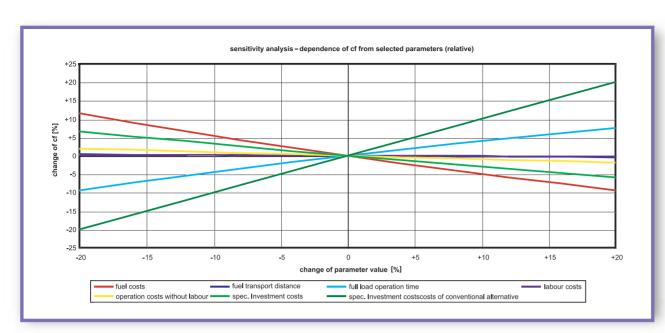


Figure 2: Sensitivity analysis – dependence of CF from selected parameters; Example Bio-oil Diesel CHP.

Application	Competitiveness factor CF
Biomass boiler 2000kW (industrial use)	1.03
Biomass FB gasification + IC engine 470 kWe, (industrial use)	0.83
Biomass IGCC CHP 46 MWe, (utility)	0.82
Bio-oil Boiler 2000kW (Industrial use)	0.79
Bio-oil Combined cycle CHP Plant 50 MWe (utility)	0.77
Bio-oil Diesel (low speed) CHP 2000 MWe (industrial use)	1.00

Table 1: Preliminary calculations on the competitiveness of bio-energy applications.

Results

As a preliminary assessment, six bio-energy applications were selected, three of them using pyrolysis liquid (bio-oil) applications. The results are summarised in Table 1.

These initial results show that the competitiveness of bio-energy can be quite different. The most competitive application investigated shows the mid-size biomass boiler for process heat production in industries and this in fact corresponds to market reality. Boilers using bio-oil of the same size seem to be less competitive (CF = 0.79); and bio oil diesel CHP seems to be competitive compared to conventional energy supplies and also compared to fixed bed biomass gasification systems.

The relative cost breakdown of the applications selected is shown in Figure 1. The sensitivity analysis of changes in the

parameters for the calculations is very important for interpretation of the results. For example the sensitivity analysis for the bio-oil diesel CHP is given in Figure 2. It can be seen that competitiveness depends mostly on the cost of conventional alternatives and from the bio-fuel cost. All other parameters are of relatively minor importance.

Conclusions

As many of the data especially for the bio-oil applications and the IGCC plants are based on expectations and not on practical experience, the results of these initial calculations should be viewed as an attempt to illustrate the procedure rather than give exact figures.

An Altener Contract has recently been awarded to develop the procedure and improve the cost bases used in the analysis.

For further information contact:

Mr Maximilian Lauer Joanneum Research Graz, Elisabethstrasse 5, A-8010, Austria

Tel: +43 316 876 1336 Fax: +43 316 876 1320 Email: max.lauer@joanneum.ac.at

An environment-friendly oil sorbent from wood by heat-treatment

By Katsuo Umehara, Hokkaido Forest Products Research Institute, Japan

Introduction

Recent oil spills have received considerable attention from the resultant environmental pollution and environmental problems. Of the various methods proposed for the recovery of waste oil, adsorption by synthetic polymers such as polypropylene and polyurethane have been considered to be very promising, however the use of waste synthetic materials may themselves create undesirable problems. An alternative material has been developed based on low temperature pyrolysis of softwood fibre.

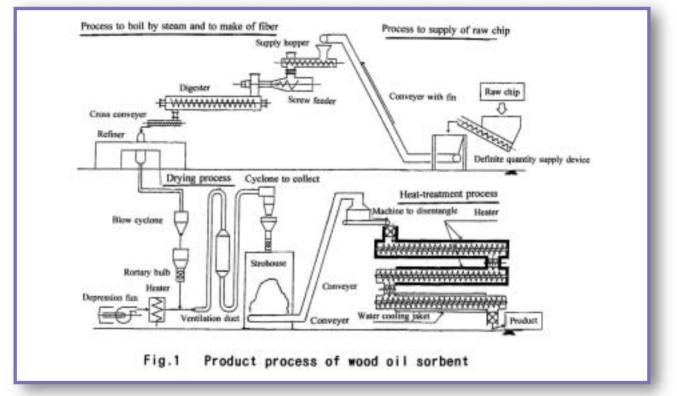


Figure 1: Product process of wood oil sorbent.

Experimental results

Softwood chips were defiberized by a pressured double disk refiner with saturated steam. The resulting fibre was dried in an air steam drier at 130°C. The bulk density of the fibre was 10.2 mg cm⁻³. The fibre was treated in an electric rotary oven (10 dm³) at 200 to 500°C for a various periods of time.

The liquid sorption capacity of the heattreated products is significantly affected by temperature. The oil capacity was almost constant at a temperature range of 200 to 350°C but above this temperature the oil sorption capacity decreased. In addition, a steady decrease in the water adsorbance was observed as temperature increased up to 500°C. To examine the effect of residence time at high temperature on oil and water adsorbance, the softwood fibre was heated at 350°C for 10 to 180 minutes. When the fibre was heated for 60 minutes, the maximum oil sorption was obtained with minimum water sorption although the variation was not significant. From an evaluation of the results, it was recommended that the optimum temperature was 325°C. The oil adsorption capacities of the heat-treated products were 19, 30, 28, 34 g/g sorbent for kerosene, machine oil, salad oil, anti-freeze (propylene glycol), respectively.

As mentioned above, these heat-treated products of wood are considered to be an excellent and environmental-friendly oil sorbent.

Results from a production unit

A continuous production furnace was installed in the institute and tested. The furnace is constructed in three parts. For the first 2-4 minutes, the fibre was dried and preheated at 200-250°C, and then heated at 300-350°C for 4-8 minutes. Subsequently it was heated at 200-250°C for 2-4 minutes in order to fix the pyrolysates onto the surface of the fibre, and then cooled. (Figures 1 and 2). The sorption ability of the fibrous sorbent manufactured by this practical scale did not differ significantly from the one produced experimentally. For class A fuel oil and light oil, for example, it adsorbed 20 g/g of sorbent. Based on these experiments, a commercial factory was built in 1999 with an annual production capacity of 100 tons. Using this material with a non-woven cloth of polypropylene, a package of sorbent was made. This can be used for adsorption of oil spills in rivers and seas, and on the road. It is also useful for removal of waste cooking oil.

Patent

The oil sorbent is patented in USA (USA patent 5,585,319), Canada (Canada patent 2,115,009) and Europe (Europe patent EP0612562B1.)

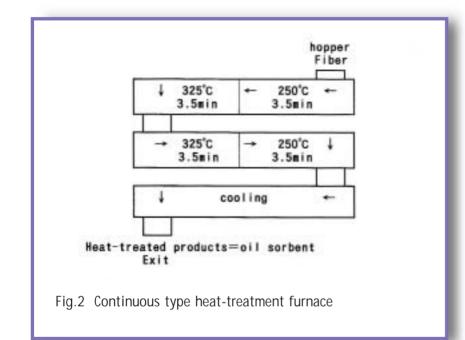


Figure 2: Continuous type heat-treatment furnace.

Commercial bag of oil sorbent (packed heated wood fibre).

Left: Heavy oil on water in the beaker. Right: Wood oil sorbent in the beaker.

For more information contact:

Mr Katsuo Umehara Hokkaido Forest Products Research Institute 1-10 Nishikagura Asahikawa Hokkaido 071-0198 Japan

Tel: +81 166 75 4233 Fax: +81 166 75 3621 Email: honma@fpri.asahikawa.hokkaido.jp

For more information about patent license, please contact: endou@fpri.asahikawa.hokkaido.jp Any technical questions, please contact: umehara@fpri.asahikawa.hokkaido.jp

Continuous type heat-treatment furnace.

Report on Research on Pyrolysis in Spain

By Jesus Arauzo, University of Zaragoza, Spain

In Spain, most of the activities, which have been developed in pyrolysis, are based on obtaining charcoal and activated carbon from different raw materials, nevertheless, there has also been some research in pyrolysis processes to obtain bio-oil. Most work has been carried out by Chemical Engineering Departments in different Universities. Union Fenosa with the University of Santiago have carried out the only industrial research. Both institutions, as it is well known, have developed, built and operated a pilot-plant of semi-industrial scale (200 kg/h of dry biomass) using the WFPP technology (see PyNe Newsletter issue 6). The plant is currently on stand-by waiting for future projects.

Figure 1: Spouted bed pyrolysis unit at University of Basque.

At the University of Basque Country, pilot plants based on spouted bed reactors, have been developed for sawdust pyrolysis, with a liquid yield similar to fluidized beds (see Figures 1 and 2) (e.g. 1.2). The technology allows operation with a catalyst without segregation problems. The utilisation of zeolite HZSM-5 as a catalyst gives a less oxygenated liquid and a lower CO₂ yield operating at atmospheric pressure. This provides an alternative to catalytic hydrogenation. The facilities given by this technology for different size and density solids, have lead to new pyrolysis pilot plants for different kinds of materials such as plastic waste, tires and mixtures of these two materials, with or without catalyst.

Two projects are currently being developed at the University of Alicante on primary decomposition of solid wastes and thermal decomposition of natural and synthetic polymers (e.g. 3,4). The research is based on the analysis of the major and minor products, (toxic in many cases), which are produced during primary and secondary stages in pyrolysis processes, using TG, DSC, FTIR, GC and MS.

Kinetic models for basic and catalytic pyrolysis are being developed by several Research Centres such as the University of Zaragoza (e.g. 5,6). Hydrogen and syngas production is one of the main goals of the research. The equipment is shown in Figure 3. A study on black liquor pyrolysis is being carried out in collaboration with the Institute of Pulp and Paper (Atlanta, USA) in order to make use of this residue for energy purposes.

Conventional pyrolysis of two different materials: biomass waste from pine, eucalyptus and holm oak sawmills and industrial waste such as Kraft lignin is being developed by University of Malaga (e.g. 7,8). This University is also developing co-pyrolysis of carbon and biomass waste in laboratory and pilot plant scale. Several universities are developing biomass pyrolysis using different catalysts to obtain a higher charcoal yield with great surface activity, particularly the Universities of Malaga and Extremadura.

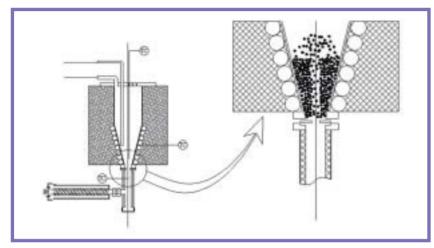


Figure 2: Spouted bed reactor.

Figure 3: University of Zaragoza research unit.

For further details contact:

Dr Jesus Arauzo Universidad de Zaragoza Chemical & Environmental Engineering Department Centro Politecnico Superior María de Luna 3 E 50015 Zaragoza SPAIN Tel: +34 97 676 1878 Fax: +34 97 676 1879 Email: qtarauzo@posta.unizar.es

Prof. Dr. Tomas Cordero Departamento de Ingeniería Química Universidad de Malaga Campus Universitario de Teatinos 29071 – Malaga Email: cordero@uma.es Prof. Dr. Martin Olazar Departmento de Ingeniería Química Facultad de Ciencias Químicas Universidad del Pais Vasco 48080 – Vizcaya Apartado de Correos 644 Email: iqpolaum@lg.ehu.es

Prof. Dr.Antonio Marcilla Departmento de Ingeniería Química Universidad de Alicante Apartado 99 Email: antonio.marcilla@ua.es

References

- Olazar, M., Aguado, R., Bilbao, J., Barona, A., "Pyrolysis of Sawdust in a Conical Spouted-Bed Reactor with a HZSM-5 Catalyst", AIChE J., 46, 1025-1033 (2000).
- Aguado, R., Olazar, M., San José, M.J., Aguirre, G., Bilbao, J., "Pyrolysis of Sawdust in a Conical Spouted Bed Reactor. Yields and Product Composition", Ind. Eng. Chem. Res., 39, 1925-1933 (2000).
- R. Font, A. Fullana, J.A. caballero, J. Candela y A. García, "Pyrolysis study of polyurethane", J. Anal. Appl. Pyrol., 58-59 (2000) 63-77.
- J. C. García-Quesada, A. Marcilla Y M. Gilbert, "Study of the pyrolysis behaviour of peroxide crosslinked unplasticized PVC", J. Anal. Appl. Pyrol., 58-59 (2000) 651-666.
- L. Garcia, M.L. Salvador, J. Arauzo, R. Bilbao, "Influence of catalyst weight /biomass flow rate on gas production in the catalytic pyrolysis of pine sawdust at low temperatures" Ind. Eng. Chem. Res., 37,3812-3819, (1998)
- L. Garcia, M.L. Salvador, R. Bilbao, J. Arauzo, "Catalytic steam gasification of pine sawdust. Effect of catalyst weight/biomass flow rate and steam/biomass ratios on gas production and composition", Energy & Fuels, 13(1), 851-859, (1999)
- J. Rodriguez-Mirasol, T. Cordero, and J.J. Rodriguez, "CO2 – reactivity of eucalyptus kraft lignin chars", Carbon 31, 53-61 (1993)
- J. Rodriguez-Mirasol, T. Cordero, and J.J. Rodriguez, "Activated carbon from CO2 partial gasification of ecucalyptus kraft lignin", Energy & Fuels, 7, 133-138, (1993)

ENEL Pilot Plant

By Giuseppe Neri, ENEL Production, Italy

The largest fast pyrolysis plant in Europe is located in Italy near the town of Bastardo. It is sized at 3.3 MWth and at the nominal feed of 625 kg/h of hardwood sawdust it produces about 400 kg/h of bio-oil with a typical water content of 25 %. It uses the Rapid Thermal Pyrolysis process, a trademark of the Canadian company Ensyn.

Figure 1: ENEL Fast Pyrolysis Plant in Bastardo.

The plant was commissioned in 1998 and since then has been operating occasionally during 1998 and 1999. After a shut down of almost two years the plant will be reactivated in the 5th Framework Programme of the European Commission. The plant owner ENEL Produzione, the Finnish organizations VTT and Fortum, the Italian regional agency ARUSIA and the Italian company CCT have begun a project entitled PYROHEAT, which aims to produce 100 metric tons of bio-oil of improved quality in order to assess the performance of two different types of commercial boiler from a few hundred kW to a few MW.

The plant improvements include adding a second cyclone downstream of the reactor for improving solids separation, and modifying the bio-oil recovery stage to improve the

liquid yield and reduce the water content of the bio-oil. Modifications to the liquid recovery stage have been initiated as well as the overhaul of the plant. The work programme of the combustion tests of bio-oil in the boilers will be carried out in parallel in Italy and in Finland. Boilers designed for light and heavy fuel oils will be used after having modified the feeding system and the burners.

The conclusion of the project is expected in the first half of 2003 and by that time the partners are confident that they can show that it is possible to produce bio-oil suitable for feeding boilers of small size normally used for generating hot water or low pressure steam. The project will thus provide a real perspective of the use of pyrolysis oil in thermal power plant.

For further information contact:

Dr Giuseppe Neri ENEL Production Via A Pisano 120 56122 Pisa Italy

Tel: +39 050 53 5815 Fax: +39 050 53 5521 Email: nerig@pte.enel.it

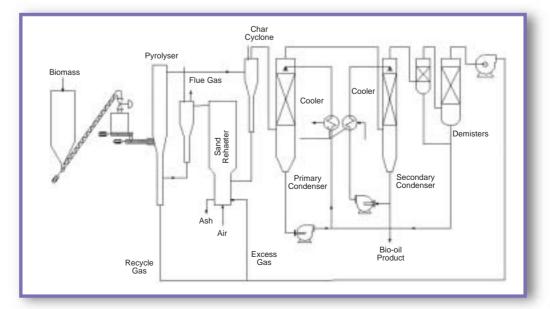


Figure 2: ENEL Fast Pyrolysis flowsheet.

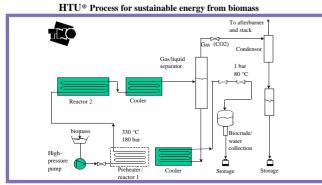
TNO Environment, Energy and Process Innovation (TNO MEP)

By Jan Zeevalkink, TNO, The Netherlands

The ambition of this TNO institute for applied scientific research is to facilitate sustainable industrial production and environmental management. Through technological innovation and collaboration with industry and government TNO wants to contribute to implement solutions that stand the test of time. The introduction of biomass as a fuel and as a raw material for non-food products is an important field of activities, comprising development of bio-energy technology, research on products from biomass and policy studies for industry and government to support the implementation of biomass.

HTU® Pilot plant.

The energy-from-biomass activities are concentrated in the Environmental Systems Department, active in technological development and innovations in thermal processing of biomass and waste. The entire range of activities from wood-burning stoves to large-scale industrial energy generation is covered. Important developments supported by own research and study are:


- Flash pyrolysis for oil production: reactor development and products research.
- Participation in the development of the HTU®, process for thermal liquefaction of biomass to produce bio-crude as an alternative for fossil crude (see PyNe Newsletter number 10 for further information). The 20 kg/h pilot plant was started up in October 1999 with the primary objective of deriving data for design of a commercial unit. The results

are promising and construction of a demonstration plant is being considered.

- Gasification: pre-engineering of a 1 MWe biomass gasification plant on TNO's premises is conducted. The plant will demonstrate heat and power production by biomass gasification and will be used as research reactor.
- Modelling large scale biomass gasification and combustion systems.

TNO is appointed by the government as the certification body for wood burning stoves.

The use of biomass for non-food applications is also being investigated and developed. The department for Environmental Analysis concentrates on technology development and chain studies for the integrated assessment of production chains. Important projects to demonstrate these activities are:

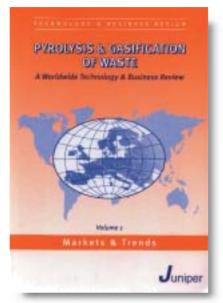
HTU® Process flowsheet for sustainable energy from biomass.

- The bio-cascade: a study into the integrated use of biomass for products and energy, in order to derive maximum profit from the available biomass.
- Life cycle analysis of various methods of energy recovery from wood or waste wood.
- Development of dry separation methods for agricultural products, to obtain valuable components or to remove negative properties.

To support the implementation of biomass systems, TNO is performing and contributing to many studies to support the Dutch biomass policy. Important subjects studied in this respect are:

- Road maps for sustainable energy production from biomass and waste in the Netherlands in 2020.
- Formulation a system for the classification of biomass fuels.
- Assessment methods for energy from biomass projects.
- Availability of biomass for energy production in the Netherlands, and on an European and global scale for the Dutch biomass policy.

Furthermore, TNO has started the Dutch Information Centre for Biomass (ICB) and leads the IEA Bioenergy Task 19 on Biomass Combustion.

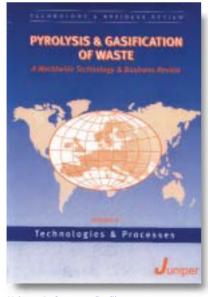

For further information contact:

Dr J A Zeevalkink TNO Environment, Energy and Process Innovation Laan van Westenenk 501 PO Box 342 7300 AH Apeldoorn The Netherlands

Tel: +31 55 549 37 44 Fax: +31 55 549 37 40 Email: jan.zeevalkink@mep.tno.nl Web: http://www.mep.tno.nl

Pyrolysis and Gasification of Waste: A Worldwide Technology and Business Review

Juniper Consulting Ltd. - Reviewed by Dr Cordner Peacocke, Care Ltd, UK



Volume 1 gives a considerable analysis of the potential wastes, feedstocks, conversion routes and technologies available for its disposal with projections for consumption to 2008. It is apparent that efforts have been made to encompass all the possible waste streams that may be suitable for pyrolysis and gasification. Important information on the fiscal and legislative incentives are provided predominantly for the EU, North America and Asian markets, which is useful in assessing local effects on technology developments and acceptance. Unfortunately, this laudable attempt does not give the reader a clear indication of what the marketleading technologies are and how suitable they are for the range of wastes considered.

The future of this sector depends very much on market demands and pressures. However, the market predictions reported are very generalised and unsubstantiated. For example in the case of sewage sludge,

Volume 1: Markets & Trends

the industry knows that sewage sludge thermal conversion will be a growth sector, due to recent changes in EU legislation on emissions to the environment, but by how much and what technology leaders are emerging is not discussed. Market analyses and forecasts are influenced by a wide range of legislative, economic, fiscal and political measures, all of which are subject to change. Thus the predictions for markets sizes to 2008 can only be viewed as highly speculative. As more evidence of commercial ventures emerges, then more rational and balanced assessments can be made and these need to be carefully evaluated on a countryby-country basis. The present conclusions on each country are therefore vague and generalised and the suggestions that additional information can be purchased does not sit comfortably with the high cost of the report (about USD 2000, 2000 Euros, 1300 GBP).

Volume 2: Company Profiles

The range of organisations covered is very extensive, with over 65 separate entries that cover activities and processes all over the world. Unfortunately, a generic or common profile template is not applied to each entry, which would help to highlight discrepancies and inconsistencies on a comparative basis, and allow the reader to make an assessment of the substantiation of claims and operational systems. Juniper does, however, use a basic template for the basic information about the organisation.

In the majority of cases, information has been obtained from sales literature, Internet sites, published papers and information provided from questionnaires sent to the respective organisations. The degree of detail in each company profile is, therefore, highly varied and an objective assessment of the processes covered is therefore difficult. It is evident that in very few cases has a direct visit been made to view facilities, discuss the technology with the providers and inspect operational plant where appropriate. The authors admit in their introduction that there are omissions and inaccuracies. Some of the stated facts in the report are inaccurate and in some cases, photographs are incorrectly captioned such as Dynamotive, Fig. 2.59, p 2.93, which is not a pyrolysis plant, but a calcium enriched bio-oil plant. This is where the weaknesses in the second volume become apparent. The authors of the report should consider obtaining independent expert advice on the technologies, preferably those who have worked with operational systems and should also have visited some of the organisations listed. This would reduce the level of errors: improve the quality of the technical analysis given at the end of each profile and instil confidence in the reader as to the robustness of the information

Overall, the two volumes are useful as reference material. However, direct consultation and discussion with the technology providers is recommended to avoid costs and obtain first hand information.

Diary of Events

Information compiled by Claire Humphreys, Aston University, UK

WasteTech 2001, 2nd International Trade Fair and Congress on waste Management

	5 5
Venue:	Moscow, Russia
Date:	5-8 June 2001
Contact:	The Exhibition Management
	and the Congress Secretariat
	PO Box 173
	Moscow, 107078, Russia
Tel:	+7 95 975 1364 / 975 5104
Fax:	+7 95 207 6376 / 207 6310
Email:	waste-tech@sibico.com
	Sibico@dialup.ptt.ru
Website:	www.sibico.com/waste-tech

Seminar on Aerosols from **Biomass Combustion**

Venue:	Swiss Federal Institute of
	Technology, Switzerland
Date:	27 June 2001
Contact:	Dr. Thomas Nussbaumer
	Verenum, Langmauerstrasse 109
	CH – 8006 Zürich, SWITZERLAND
Tel:	+41 (0)1 364 14 12
Fax:	+41 (0)1 364 14 21
Email:	verenum@access.ch

38th IUPAC Congress

Venue: Date: Contact:	Bristane, Australia 1-6 July 2001 World Chemistry Congress
	Secretariat (Carillon Conference Management) PO Box 177 Red Hill, Q 4059, Australia
Tel:	+61 7 3368 2644
Fax:	+61 7 3369 3731
Email: Website:	cc2001@ccm.com.au www.ccm.com.au/wcc

Trade Fair Renewable Resources and **Technologies 3rd International Congress** 'Materials made from renewable Resources'

Venue:	Germany	
Date:	5-6 September 2001	
Contact:	Dr Günter Matter (Project Leader)	
	Gothaer Strasse 34, D-99094,	
	Germany	
Tel:	+49 (0)361 400 1440	
Fax:	+49 (0)361 400 1112	
Email:	dr.matter@messe-erfurt.de	
Website:	www.narotech.de	

BIOS ENERGIE 2001

		venue.
Venue:	Mulhouse, France	Date:
Date:	13-16 September 2001	Contact:
Contact:	François Bornschein or	
	Cécile Pierron	
	BP 149, 28 Boulevard Gambetta	
	F-39004, LON LE SAUNIER Cedex,	Tel:
	France	Fax:
Tel:	+33 384 47 8100	Email:
Fax:	+33 384 47 8119	
Email:	salons@itebe.org	
Website:	www.itebe.org	

Venue: Biella, Italy Date: 27-30 September 2001 Giustino Mezzalira Contact: I-30171 MESTRE (VE) Via Monte Sabotino 1, Italy Tel: +39 041 92 4672 Fax: +39 041 92 4672 Email: forlener@paulownia.it

www.paulownia.it

Energie Aus Holz 2001

Website:

Tel·

Fax:

Tel:

Fax:

Foresta Legno Energia

Venue: Straubing, Germany 4-7 October 2001 Date: Contact: Christian Schröter or Walter Wallrapp C.A.R.M.E.N. Technologiepark 13 D-97222 RIMOAR, Germany +49 9365 8069 32 +49 9365 8069 55 Email: contact@carmen-ev.de Website: www.carmen-ev.de

Fifth Biomass Conference of the Americas

Venue: Orlando, Florida 17-21 September 2001 Date: Website: www.nrel.gov/bioam

1st International Congress on Biomass for Metal Production and Electricity Generation

Centre in Belo Horizonte, Brazil Venue: Date: 8-11 October 2001 Website: www.issbrazil.org/congress1.asp

Symposium on Energy and Green Chemicals from Biomass

51st Canadian Chemical Engineering Conference

Venue: Nova Scotia, Canada 14-17 October 2001 Date: Professors A K Dalai, NN Contact: Bakhshi or Dr M Ikura Department of Chemical Engineering University of Saskatchewan 110 Science Place, Saskatoon SK, Canada, S7N 5C9 +1 306 966 4771 +1 306 966 4777 Email: dalai@engr.usask.ca Website: www.chemeng.ca/halifax2001/ 18th World Energy Congress: Energy Markets: The Challenges of the New Millennium Venue: Buenos Aires, Argentina 21-25 October 2001

18th WEC c/o Congresos Internationales SA Moreno 584 – Piso 9 1091 Buenos Aires, Argentina +54 1 4342 3216/4342 3283 +54 1 331 0223/334 38111 18th-wec@congresosint.com.ar

Renewable Energy Indonesia 2001

55
Jakarta's International
Exhibition Centre, Kemayoran
7-10 November 2001
Stephen Luff
Overseas Exhibition Services Ltd
11 Manchester Square
London
W1U 3PL, UK
+44 207 862 2090
+44 207 862 2098
indonesia@montnet.com
www.montnet.com

Conferencia Cientifica internaacional

MEDIO AMBIENTE SIGLO XXI

WEDTO AWDIENTE STOLO AAT		
Venue:	Santa Clara, Cub	
Date:	20-24 November 2001	
Contact:	Ing. Pedro Casanova Treto	
	Universidad Central 'Marta Abreu'	
	de las villas	
	CETA	
	Carretera a Camajuaní km 5 ¹ / ₂	
	Santa Clara, CP 54830	
	Villa Clara, Cuba	
Tel:	+53 422 281194 / 281630	
Fax:	+53 422 281608	
Email:	pcasanova@fim.uclu.edu.cu	
Website:	www.pcasanova2000@yahoo.com	

BIOS ENERGIE 2000

DIOU LINEI	
Venue:	Lons le Saunier, France
Date:	4-7 April 2002
Contact:	Francçis Bornschein or
	Cécile Pierron
	BP 149
	28 Boulevard Gambetta
	F-39004
	LONS LE SAUNIER cedex, France
Tel:	+33 384 47 8100
Fax:	+33 384 47 8119
Email:	salons@itebe.org
Website:	www.itebe.org

Technibois Energie 2002

Venue:	Québec, Canada
Date:	2-4 may 2002
Contact:	Rolande Gauvin
	GESTION TB Inc
	C.P. 1010
	CAN-G6P 8Y1
	Victoria (Québec), Ca
Tel:	+1 418 845 8247
Fax:	+1 418 845 8576
Email:	gesttb@videotron.ca
Website:	www.technibois.com

Canada

ISREE-8 Conference

Venue:	Orlando, Florida
Date:	4-8 August 2002
Website:	www.fsec.ucf.edu/ed/iase

(13)

Preliminary programme

<u>ANNOUNCEMENT</u>

FIFTH BIOMASS CONFERENCE OF THE AMERICAS

Bioenergy and Biobased Products: Technologies, Markets, and Policies

An International Conference • September 17-21, 2001 • The Rosen Centre Hotel; Orlando, Florida, USA •

ORGANIZERS: U.S. DEPARTMENT OF ENERGY • U.S. DEPARTMENT OF AGRICULTURE NATURAL RESOURCES CANADA • NATIONAL RENEWABLE ENERGY LABORATORY

FEATURING: ORAL PRESENTATIONS • INTERACTIVE POSTER CLUSTERS • EXHIBITS

Biomass resources

Advances in biomass production, residues availability, soil sustainability, and related environmental topics.

Bioenergy products

Advances in conversion for a wide range of bioenergy products such as power generation, biofuels like ethanol, biodiesel and other liquid or gaseous fuels.

Integrating emerging technologies with conventional

energy systems – **exploring synergisms** Such as cofiring of coal and biomass, natural gas and biomass gasification.

Biobased products

Advances in production of commodities, intermediate products, fine and specialty chemicals, and natural fibers and derivatives.

Biomass refineries: the link between biobased and bioenergy products

Food/forest products refineries; emerging refineries based on sugars, syn gas, and new fractionation technologies.

Environmental and ecological impacts of bioenergy and biobased products

Includes life cycle analysis and impact assessment methodologies.

Public/private partnerships

Examples of success stories.

Social acceptability of bioenergy

and biobased products International, regional, national, and local approaches and methodologies.

Policies for market development

Federal, state, and local programs; policy framework development to accelerate penetration; and incorporation of externalities.

Bioenergy and biobased product acquisition by the federal government

Papers will be presented in oral and interactive poster cluster sessions. All papers will be included in the proceedings. Full papers will be accepted at the conference, in electronic form, published as a CD-ROM, and mailed to all participants.

For further information visit: www.nrel.gov/bioam

Vacancy

Associate Professional Officer, Wood Energy Information Systems

Title: Sector: Location: Languages: Duration: Associate Professional Officer, Bioenergy Information System Bioenergy, Wood Energy, Economics of Energy Italy, Rome; with travel to Austria and New Zealand English with (desirable) knowledge of Spanish and French 2 years

For further information, contact: Supervisor

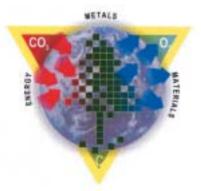
Mr Miguel Angel Trossero Food and Agriculture Organisation Viale delle Terme di Caracalla Rome, 00100 ITALY Tel: +39 06 5705 4175 Fax: +39 06 5705 5618 Email: Miguel.Trossero@fao.org

Symposium on Energy and Green Chemicals From Biomass 51st Canadian Chemical Engineering Conference

World Trade and Convention Centre, Halifax, Nova Scotia, October 14-17, 2001, www.chemeng.ca/halifax2001/

The possibility of future shortage of conventional oil reserves has created considerable interest in using alternative source of energy. Amongst the entire renewable energy spectrum, biomass represents the highest potential and should play a vital role in the future energy scenario. It is the intent of this symposium to bring to the attention of chemical engineering community a new and useful energy source (especially CO_2 -neutral fuel from biomass).

This symposium aims at attracting researchers from industry, academia, and various other organizations. The topics included are given below:


- Thermochemical processing technologies (biomass combustion, gasification, pyrolysis, esterification, ash characterization and utilization, etc.)
- Value-added products (fuel gases, biomass derived oils and chemicals, fuel additives etc.) and their applications.
- Characterization of biomass derived products.
- · Biological processes.
- Commercial applications.

For further information contact:

Professors A.K. Dalai and N.N. Bakhshi Department of Chemical Engineering University of Saskatchewan 110 Science Place, Saskatoon, SK, Canada S7N 5C9 Tel: +1 306 966-4771 Fax: +1 306 966-4777 Email: dalai@engr.usask.ca

Dr. M. Ikura

CANMET Energy Tech. Centre Natural Resources Canada 1 Haanel Drive, Nepean, ON Canada K1A 1M1 Tel: +1 613 996-0505 Fax: +1 613 943-8882 Email: mikura@nrcan.gc.ca

BRAZIL

The 1st International Congress on Biomass for Metal Production and Electricity Generation is to be held at the Congress and Exhibition Centre in Belo Horizonte, Brazil between 8-11 October 2001.

This congress is conceived to be the major technical forum and business meeting to enhance the self-sustainability capacity of the cultivated biomass uses to produce materials. The Brazilian Charcoal, Iron, steel, Ferro-Alloys and Thermal Utility industries based on cultivated biomass and biomass wastes will be its focus as well as their equivalent overseas activities. Various international and Brazilian companies, organisations, universities and research centres will also participate in the conference, especially the ones dealing with applications of wood and other biomass material technologies and processes, towards self-sustainable development for the production of metals and electricity. The state of the art of this industry and future challenges will be addressed and discussed among world experts present at the conference.

The enormous implications of the planted biomass based metal industries towards the acid rain, ozone depletion, global warming and mitigation will be one of the topics discussed, and also ways and means to make them permanently self-sustainable and highly competitive associated to real examples.

Technical visits will be done in some major companies that are self-sustainable and certified as being environmentally and socially beneficial for the living creatures of the eco-system they are part of. Topics/sections that will be addressed include:

- Introduction.
- Biomass
- Biomass carbonisation.
- Biomass carbonisation by products.
- Metallurgical.
- Electricity from biomass.

Technical visits to carbonisation plants, iron making and steel making mills and Forro-alloy plants.

For further information on the conference programme visit: www.issbrazil.org/congress1.asp

Co-ordinator

Tony Bridgwater Bio Energy Research Group Aston University Birmingham **B4 7ET** UNITED KINGDOM Tel: +44 121 359 3611 +44 121 359 6814/4094 Fax. Email: a.v.bridgwater@aston.ac.uk

Maximilian Lauer Institute of Energy Research Joanneum Research Elisabethstrasse 5 A-8010 Graz **AUSTRIA** +43 316 876 1336 Tel: Fax: +43 316 876 1320

Email: max.lauer@joanneum.ac.at

31

Yves Schenkel Centre for Agricultural Research (CRA) Chaussée de Namur, 146 Gembloux B-5030 BELGIUM +32 81 612501 Tel·

Fax: +32 81 615847 Email: schenkel@cragx.fgov.be

15

.

- -

. .

1.0

. .

.

* 0

1.0

6

. 0

. 00

....

+ 01

. 00

-

* 0

100

-

60

0

Karsten Pedersen Danish Technological Institute Teknologiparken DK8000 Aarhus C DENMARK +45 7220 1000 Tel: Fax: +45 89 43 8673 Email: karsten.pedersen@dti.dk

-

Anja Oasmaa

VTT Energy New Energy Technologies PO Box 1601 Espoo, FIN-02044 VTT FINLAND +358 9 456 5594 Tel: +358 9 460 493 Fax: Email: Anja.Oasmaa@vtt.fi

France

Philippe Girard Cirad Forêt Maison de la Technologie 73 rue Jean François Breton **BP5035** 34032 Montpellier FRANCE Tel: +33 467 61 44 90 Fax: +33 467 61 65 15 Email: philippe.girard@cirad.fr

Dietrich Meier BFH-Institute for Wood Chemistry Leuschnerstrasse 91 D-21031 Hamburg GERMANY Tel: +49 40 739 62 517 +49 40 739 62 502 Fax: Email: d.meier@holz.uni-hamburg.de

Please contact your country representative for further information.

Elma Gyftopoulou C.R.E.S. - Biomass Department 19th km Athinon Marathonos Ave GR 190 09 Pikermi – Attikis GREECE Tel: +30 1 60 39 900 Ext 416 +30 1 60 39 904/905 Fax: Email: elma@cres.gr

Pearse Buckley United Waste Ireland Limited 33 Elm Road Donnycarney Dublin 9 **IRELAND** Tel: +353 1 805 8222 +353 1 805 8223 Fax Email: pearseb@iol.ie

2.

Colomba Di Blasi Universitá degli Studi di Napoli 'Federico II' Dipartimento di Ingegneria Chimica P. le V. Tecchio 80125 Napoli ITALY Tel: +39 081 768 2232 +39 081 239 1800 Fax Email: diblasi@unina.it

Wolter Prins

BTG **Business & Science Park** Pantheon 12 **PS Enschede** 7521 **NETHERLANDS** Tel: +31 53 486 2282 +31 53 432 5399 Fax Email: w.prins@ct.utwente.nl

Norway

Morten Gronli SINTEF Energy Research Thermal Energy and Hydropower 7034 Trondheim NORWAY +47 73 59 37 25 Tel: +47 73 59 28 89 Fax: Email: Morten.Gronli@energy.sintef.no

Portugal

Filomena Pinto INETI-ITE-DTC Edificio J Azinhaga dos Lameiro Estrada do Paço do Lumiar 1699 Lisboa Codex Tel:

Spain

Jesus Arauzo Universidad de Zaragoza Chemical & Environmental Engineering Centro Politecnico Superior María de Luna 3 E 50015 Zaragoza SPAIN Tel: +34 97 676 1878 +34 97 676 1879 Fax: Email: qtarauzo@posta.unizar.es

Sweden

Erik Rensfelt TPS Termiska Processer AB S-611 82 Nykoping **SWEDEN** +46 155 221385 +46 155 263052 Fax: Email: erik.rensfelt@tps.se

Stefan Czernik NREL 1617 Cole Boulevard Golden, Colorado, 80401, USA Tel: +1 303 384 7703 +1 303 384 6363 Fax: Email: Stefan_Czernik@NREL.Gov

PyNe Group in Birmingham, UK, December 2000.

The PyNe newsletter is published by the Bio-Energy Research Group, Aston University, United Kingdom and is sponsored by the FAIR Programme of the European Commission DGXII and IEA Bioenergy.

For further details or offers to contribute, please contact Claire Humphreys (see inside front cover for details). Any opinions published are those of the contributors and do not reflect any policies of the EC or any other organisation. EOE © Copyright Aston University.